Botzinger expiratory-augmenting neurons and the parafacial respiratory group.
نویسندگان
چکیده
In neonatal rat brains in vitro, the rostral ventral respiratory column (rVRC) contains neurons that burst just before the phrenic nerve discharge (PND) and rebound after inspiration (pre-I neurons). These neurons, called parafacial respiratory group (pfRG), have been interpreted as a master inspiratory oscillator, an expiratory rhythm generator or simply as neonatal precursors of retrotrapezoid (RTN) chemoreceptor neurons. pfRG neurons have not been identified in adults, and their phenotype is unknown. Here, we confirm that the rVRC normally lacks pre-I neurons in adult anesthetized rats. However, we show that, during hypercapnic hypoxia, a population of rVRC expiratory-augmenting (E-AUG) neurons consistently develops a pre-I discharge. These cells reside in the Bötzinger region of the rVRC, they express glycine-transporter-2, and their axons arborize throughout the VRC. Hypoxia triggers an identical pre-I pattern in retroambigual expiratory bulbospinal neurons, but this pattern is not elicited in Bötzinger expiratory-decrementing neurons, Bötzinger inspiratory neurons, RTN neurons, and blood pressure-regulating neurons. In conclusion, under hypoxia in vivo, abdominal expiratory premotor neurons of adult rats develop a pre-I pattern reminiscent of that observed in neonate brainstems in vitro. In the rVRC of adult rats, pre-I cells include selected rhythmogenic neurons (glycinergic Bötzinger neurons) but not RTN chemoreceptors. We suggest that the pfRG may not be an independent rhythm generator but a heterogeneous collection of E-AUG neurons (glycinergic Bötzinger neurons, possibly facial motor and premotor neurons), the discharge of which becomes preinspiratory under specific experimental conditions resulting from, in part, a prolonged and intensified activity of postinspiratory neurons.
منابع مشابه
Role of the retrotrapezoid nucleus/parafacial respiratory group in coughing and swallowing in guinea pigs.
The retrotrapezoid/parafacial respiratory group (RTN/pFRG) located ventral to the facial nucleus plays a key role in regulating breathing, especially enhanced expiratory activity during hypercapnic conditions. To clarify the roles of the RTN/pFRG region in evoking coughing, during which reflexive enhanced expiration is produced, and in swallowing, during which the expiratory activity is consist...
متن کاملCO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat.
Phox2b protein is a specific marker for neurons in the parafacial region of the ventral medulla, which are proposed to play a role in central chemoreception and postnatal survival. Mutations of PHOX2B cause congenital central hypoventilation syndrome. However, there have been no reports concerning electrophysiological characteristics of these Phox2b-expressing neurons in the parafacial region o...
متن کاملContribution of the retrotrapezoid nucleus/parafacial respiratory region to the expiratory-sympathetic coupling in response to peripheral chemoreflex in rats.
Central mechanisms of coupling between respiratory and sympathetic systems are essential for the entrainment between the enhanced respiratory drive and sympathoexcitation in response to hypoxia. However, the brainstem nuclei and neuronal network involved in these respiratory-sympathetic interactions remain unclear. Here, we evaluated whether the increase in expiratory activity and expiratory-mo...
متن کاملRespiratory neuronal activity during apnea and poststimulatory effects of laryngeal origin in the cat.
We investigated the behavior of medullary respiratory neurons in cats under pentobarbitone anesthesia, vagotomized, paralysed, and artificially ventilated to elucidate neural mechanisms underlying apnea and poststimulatory respiratory depression induced by superior laryngeal nerve (SLN) stimulation. Inspiratory neurons were completely inhibited during SLN stimulation and poststimulatory apnea. ...
متن کاملSubtype composition and responses of respiratory neurons in the pre-botzinger region to pulmonary afferent inputs in dogs.
The brain stem pre-Botzinger complex (pre-BC) plays an important role in respiratory rhythm generation. However, it is not clear what function each subpopulation of neurons in the pre-BC serves. The purpose of the present studies was to identify neuronal subpopulations of the canine pre-BC and to characterize the neuronal responses of subpopulations to experimentally imposed changes in inspirat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 28 10 شماره
صفحات -
تاریخ انتشار 2008